Inferring Regulatory Networks From Mixed Observational Data Using Directed Acyclic Graphs
نویسندگان
چکیده
منابع مشابه
Markov Properties for Acyclic Directed Mixed Graphs
We consider acyclic directed mixed graphs, in which directed edges (x → y) and bi-directed edges (x ↔ y) may occur. A simple extension of Pearl’s d-separation criterion, called m-separation, is applied to these graphs. We introduce a local Markov property which is equivalent to the global property resulting from the m-separation criterion.
متن کاملLearning Acyclic Directed Mixed Graphs from Observations and Interventions
We introduce a new family of mixed graphical models that consists of graphs with possibly directed, undirected and bidirected edges but without directed cycles. Moreover, there can be up to three edges between any pair of nodes. The new family includes Richardson’s acyclic directed mixed graphs, as well as Andersson-Madigan-Perlman chain graphs. These features imply that no family of mixed grap...
متن کاملInferring Regulatory Networks from Expression Data Using Tree-Based Methods
One of the pressing open problems of computational systems biology is the elucidation of the topology of genetic regulatory networks (GRNs) using high throughput genomic data, in particular microarray gene expression data. The Dialogue for Reverse Engineering Assessments and Methods (DREAM) challenge aims to evaluate the success of GRN inference algorithms on benchmarks of simulated data. In th...
متن کاملLearning directed acyclic graphs from large-scale genomics data
In this paper, we consider the problem of learning the genetic interaction map, i.e., the topology of a directed acyclic graph (DAG) of genetic interactions from noisy double-knockout (DK) data. Based on a set of well-established biological interaction models, we detect and classify the interactions between genes. We propose a novel linear integer optimization program called the Genetic-Interac...
متن کاملPenalized Estimation of Directed Acyclic Graphs From Discrete Data
The Bayesian network, with structure given by a directed acyclic graph (DAG), is a popular class of graphical models. However, learning Bayesian networks from discrete or categorical data is particularly challenging, due to the large parameter space and the difficulty in searching for a sparse structure. In this article, we develop a maximum penalized likelihood method to tackle this problem. I...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Frontiers in Genetics
سال: 2020
ISSN: 1664-8021
DOI: 10.3389/fgene.2020.00008